
Information Freshness and Popularity
in Mobile Caching

Clement Kam∗, Sastry Kompella∗, Gam D. Nguyen∗, Jeffrey E. Wieselthier† and Anthony Ephremides‡

∗Information Technology Division, Naval Research Laboratory, Washington, DC
†Wieselthier Research, Silver Spring, MD

‡Electrical and Computer Engineering Department, University of Maryland, College Park, MD

Abstract—We propose a model for mobile caching in which
the rate of requests for content is dependent on the popularity
and the freshness of the information. We model popularity based
on the history of requests and freshness based on the age of the
content. We consider a discrete time (slotted) system in which
new packets arrive at a limited capacity cache at discrete times.
We prove that the optimal policy for choosing the set of packets
to reside in a full cache when a packet arrives is to reject the one
with the lowest request rate in that particular slot. Thus, there
is no advantage to separately knowing the history of requests
or the age of the content. Since the optimal policy depends on
the profile of the request process, we also study the expected
behavior of the request model. We provide a sufficient condition
under which the change in the request rate goes to zero and
provide some numerical examples that illustrate this behavior.
We also consider a slight alteration to the model, in which only
the recent history of requests is used for determining the request
rate. In this case, we provide a sufficient condition for when the
rate is equal to zero, which approximates the duration of requests
for content.

I. INTRODUCTION

Users are generating content now at a much faster rate
than ever before, resulting in a significant strain on the
global internet. Studies have shown that the volume of data
generated from smartphones is set to exceed PC traffic as a
whole by the year 2020 [1]. With the proliferation of mobile
devices, traditional methods such as increasing the amount of
bandwidth, or deploying more base stations are not expected
to be able to accommodate the predicted traffic increase. In
these circumstances, content caching [2] has been recognized
as one of the most effective means of reducing delays and
improving latency performance of online content and other
internet applications. It has been widely recognized that, by
bringing the content closer to users, caches have the potential
to greatly reduce network bandwidth usage, server load, and
perceived service delays.

Content caching comes in many forms. There is hierarchical
caching [3], where caches are placed at different network
levels, with institutional caches at the top level and client
caches forming the bottom most level of the hierarchy. When
a request is not satisfied by the client cache, it is redirected to
the institutional caches. In a distributed cache scheme, there
are no intermediate caches and it falls on the institutional
caches to serve each others cache misses. Other higher caching
structures have also been envisioned [4]. Furthermore, caching

is an important tool in varied applications ranging from
femtocells [5] to SDN [6]. While the objective of traditional
caching is to reduce the retrieval delay experienced by users
when they request a certain object over the network, it is not
always the main focus. For example, Borst et al [7] showed
that it is also important to focus on bandwidth minimization
by maximizing the traffic volume served from cache.

In keeping with the growing trend for ubiquitous computing
and the Internet of Everything (IoE), in which people, data,
processes, and things connect to each other and the internet,
future networks are going to be comprised of a large number of
small nodes, with limited caching abilities. This is especially
true in the dynamic world of tactical edge networks supported
by the DoD, which will be dominated by connected tracking
and telemetry, surveillance, and sensor type applications. Such
an increasing diversity in service expectations advocates the
need for content delivery infrastructures that focuses on in-
formation freshness among different applications and content
classes. Existing policies for cache management rely on simple
heuristics such as Least Recently Used (LRU) and Least
Frequently Used (LFU) to replace the cached content with
a new one. The LRU policy was analyzed in [8].

In this paper, we focus on the relationship between the
popularity of the content, as reflected in the request rate,
and the freshness of such content. We propose a dynamic
cache management policy that tracks the age of the content
and the history of requests to choose what content to cache,
such that the number of requests for content not in cache
is minimized. This is especially relevant for the IoE, where
devices have limited buffers and will have to change cached
content frequently, and more importantly, in which past objects
are usually not requested.

Our contributions in this paper can be summarized as
follows:

1) We propose a dynamic model for requesting content that
depends on the freshness and popularity of the content.
We propose a policy for managing content when the
cache is at capacity and new content arrives, and we
prove the optimality of the proposed policy.

2) We analyze the evolution of the request rate for two ver-
sions of the proposed model, and we provide sufficient
conditions for the settling time of the request rate:

P packets

New arrivals

Requests for cached packets

Discarded packets

Missed requests

Cache

pm[n] pm-1[n] pm-k[n]

p1[n] p2[n]

Fig. 1. Caching system model.

a) For the basic proposed model, we provide a suffi-
cient condition for the time at which the change
in the rate is equal to zero. This provides an
approximation for when the requests reach a steady
state.

b) In a slightly modified version of the model, only
the recent history of requests (rather than the
complete history) impacts the request rate, which
guarantees in most cases that the request rate
decays to zero. We present a sufficient condition
for the time at which the request rate is equal
to zero, which approximates the time duration for
when a packet is requested.

II. SYSTEM MODEL

We consider a discrete time (slotted) caching system (shown
in Figure 1), in which there is a cache of size P that is sent
new packets just prior to time slots S1, S2, For a given
policy π, a decision is made when a new packet is sent to a
full cache, such that P of the P + 1 packets among those in
the cache and the new packet are selected to remain in the
cache. For all packets that have ever been sent to the cache,
whether they have been stored there or not, requests for the
delivery of such content are made. The objective is to minimize
the number of missed requests for packets (i.e., requests that
occur when not in the cache) over some number of slots N .

The rate of requests is time-varying to reflect the popularity
of files over time. The request process for packet m is given
by Rm[n], where Rm[n] = 1 if a request is made in slot n, and
Rm[n] = 0 if no request is made in slot n. The probability of
a request (or the request rate) for packet m in slot Sm is given
by pm[Sm] , Pr(Rm[Sm] = 1). The request rate evolves as

pm[Sm + n] = (pm[Sm]− αn+ βrm([Sm, Sm + n− 1]))10

where rm([Sm, Sm + n− 1]) is the number of requests made
for packet m in the interval [Sm, Sm + n − 1], and α > 0
and β > 0 are constant terms that weigh the effect of the
packet’s age n and history of requests rm([Sm, Sm + n− 1])
on the request rate, respectively. The function (x)10 is defined
according to

(x)a0 =

0 if x ≤ 0

x if 0 < x < a

a if x ≥ a

to ensure the probability is in [0, 1]. This request model reflects
the following two assumptions. The first assumption is that
packets with a higher age are less likely to be requested. The
second is that packets that have been more popular (based on
history of requests) continue to be more likely to be requested.
We define p̃m[Sm+n] , pm[Sm]−αn+βrm([Sm, Sm+n−1])
as the request value (i.e., pm[Sm + n] = (p̃m[Sm + n])10).

Although we have the request model as a function of the
two parameters of freshness and popularity, we are interested
in a single metric that blends these two and is sufficient for
effective cache management. We define the effective age of
packet m in the cache as ∆̃m[Sm + n] = ∆̃m[Sm] + n −
β/α · rm([Sm, Sm + n − 1]), where ∆̃m[Sm] is some initial
effective age at the time of packet m’s arrival to the cache. This
statistic directly relates to the instantaneous request rate, and
it conveys the idea that an effectively “fresher” packet is more
desirable, and thus more frequently requested. The request rate
can be expressed as pm[Sm + n] = (α∆̃m[Sm + n])10, where
α∆̃m[Sm] = pm[Sm].

In the next section, we determine the optimal cache man-
agement policy for this specific request model. We have
considered more generic request models, but as of yet have
been unable to prove optimal policies in such cases, even in
the simple case where the cache has a size of P = 1 packet.

III. OPTIMAL POLICY

We propose the following policy π̃ for selecting packets to
remain in the cache when a packet arrives at a full cache: the
P packets with the highest instantaneous request value remain
in the cache. Formally, if a packet arrives at slot S and packet
m has the instantaneous request value p̃m[S], we choose the
set C[S] = {m : p̃m[S] ≥ min

m
p̃m[S], |C[S]| = P}. We will

show that this policy is optimal in the sense of minimizing the
expected number of missed requests. This means that knowing
the exact age and popularity of the packets is not necessary
for selecting the optimal set of packets to cache. In the case
where packets have the same initial rate of requests at their
respective times of arrival, choosing the P packets with the
lowest effective age is an equivalent policy to π̃.1

We denote the expected number of requests for packet m in
the nth slot after slot S as E[Rm[S+n]] = Pr(Rm[S+n] =
1), and the total expected requests over the interval [S, S+N]

as E[R
[S,S+N]
m] =

∑S+N
n=S E[Rm[n]]. We denote the event that

there have been p requests for m in the interval I as εIm,p.
Let In be the interval [S, S + n].

Theorem 1: Policy π̃ minimizes the expected number of
missed requests over the time duration N under consideration.

Proof: Let φm(n|q) , Pr(Rm[S + n] = 1|εIn−1
m,q) be the

probability of a request for packet m in slot S + n given that
rm([S, S + n]) = q, q ∈ Z≥0. Since

φm(n|q) = (p̃m[S]− αn+ βq)10,

1For this particular request model, the arrival process can be arbitrary as it
does not affect the structure of the optimal policy.

it is easy to see that φm1(n|q) ≥ φm2(n|q) if p̃m1 [S] ≥
p̃m2 [S]. We define the expected number of requests in a
particular slot S + n as

E[Rm[S + n]] =

n∑
q=0

φm(n|q) Pr(εIn−1
m,q) (1)

We show that E[Rm1
[S + n]] ≥ E[Rm2

[S + n]] if p̃m1
[S] ≥

p̃m2 [S] as follows:

E[Rm1 [S + n]]− E[Rm2 [S + n]]

=

n∑
q=0

[φm1
(n|q) Pr(εIn−1

m1,q)− φm2
(n|q) Pr(εIn−1

m2,q)]

≥
n∑
q=0

[φm1
(n|q)(Pr(εIn−1

m1,q)− Pr(εIn−1
m2,q))] (2)

≥ φm1
(n|0)

n∑
q=0

[(Pr(εIn−1
m1,q)− Pr(εIn−1

m2,q))]

= 0 (3)

where (2) is from the the property of φm(n|q) for different
p̃m[S] above, and (3) is from

∑n
q=0 Pr(ε

In−1
m,q) = 1. Since this

holds for any n ≥ 0, it also holds for the sum of slots from S
to S+N . Therefore, choosing the P packets with the highest
instantaneous rates at the start of the interval to reside in the
cache and leaving out the one with the lowest instantaneous
rate will yield the minimum number of missed requests.
In the case where every packet starts with the same pm[Sm]
at its time of arrival to the cache Sm, the only term that
matters for choosing the optimal set of packets to keep in
the cache is (−αn + βrm([Sm, Sm + n])). Equivalently, we
can let each packet start with the same initial effective age at
time of arrival ∆̃m[Sm], and the effective age ∆̃m[Sm + n]
is all that is necessary to choose the optimal set of packets to
remain in the cache.

IV. REQUEST MODEL ANALYSIS

Whether the instantaneous request value (or effective age)
is a sufficient metric for optimal cache management depends
on the specifics of the request model. We are interested in
analyzing the behavior of the request model to get some insight
into the performance of a particular policy. In this section,
we study the time instant when, on average, the request rate
stabilizes.

The request rate in slot S+n, on average, is the expression
given in (1). The expression for the probability of there being
q requests for packet m in the interval In−1 can be defined
iteratively as follows:

Pr(εI0m,0) = 1− φm(0|0) = 1− (p̃m[S])10

Pr(εI0m,1) = φm(0|0) = (p̃m[S])10.

For n ≥ 2,

Pr(εIn−1
m,q) =

∏n−1
u=0(1− φm(u|0)), if q = 0

Pr(ε
In−2
m,q)(1− φm(n− 1|q)) if 1 ≤ q

+ Pr(ε
In−2

m,q−1)φm(n− 1|q − 1), ≤ n− 1∏n−1
u=0 φm(u|u), if q = n.

This can be shortened to

Pr(εIn−1
m,q) = Pr(εIn−2

m,q)(1− φm(n− 1|q))
+ Pr(ε

In−2

m,q−1)φm(n− 1|q − 1)

for 0 ≤ q ≤ n if we let Pr(εInm,q) , 0 for q < 0 or q > n+ 1.
If α > β, the request value p̃m[S+n] is strictly decreasing

in n because rm([S, S + n − 1]) is non-decreasing in n. If
α = β, the request value is non-increasing in the extreme
case where rm([S, S + n− 1]) = n (i.e., there is a request in
every slot), and will decrease in n on average if p̃m[S] < 1.
For the remainder of the paper, we focus on the case where
α < β, and the request rate can increase or decrease.

A. Change in Request Rate

We focus now on the change in the request rate from one
slot to another, and we provide a sufficient condition for which
the change in request rate goes to zero. We omit the subscript
m in this section. The change in the request rate is given by

E[R[S + n+ 1]]− E[R[S + n]]

=

n+1∑
q=0

φ(n+ 1|q) Pr(εInq)−
n∑
q=0

φ(n|q) Pr(εIn−1
q)

=

n∑
q=0

[φ(n+ 1|q)[Pr(εIn−1
q)(1− φ(n|q))

+ Pr(ε
In−1

q−1)φ(n|q − 1)]− φ(n|q) Pr(εIn−1
q)]

+φ(n+ 1|n+ 1) Pr(εIn−1
n)φ(n|n)

=

n∑
q=0

(φ(n+ 1|q)− φ(n|q)) Pr(εIn−1
n)

+

n∑
q=0

φ(n+ 1|q)(Pr(ε
In−1

q−1)φ(n|q − 1)

−Pr(εIn−1
q)φ(n|q)) + φ(n+ 1|n+ 1) Pr(εIn−1

n)

=

n∑
q=0

(φ(n+ 1|q)− φ(n|q)) Pr(εIn−1
n)

+
n∑
q=0

(φ(n+ 1|q + 1)− φ(n+ 1|q)) Pr(εIn−1
q)

×φ(n|q)

=

n∑
q=0

Pr(εIn−1
q)[(1− φ(n|q))φ(n+ 1|q)

−φ(n|q)(1− φ(n+ 1|q + 1))]. (4)

For a given n, we define q0(n) to be the minimum value of
q ∈ [0, n] such that φ(n|q) > 0. This can be found to be(⌈

α
βn−

p̃[S]
β

⌉)n
0

. For n ≤ p̃[S]/α, this yields q0(n) = 0, but
for larger n, q0(n) ≥ 0. For q < q0, the change in request rate
(4) evaluates to zero because φ(n|q) = 0.

Similarly, for a given n, we define q1(n) to be the maximum
value of q ∈ [0, n] such that φ(n|q) < 1. This can be found to
be
(⌊

α
βn−

p̃[S]
β + 1

β

⌋)n
0

. For n ≤ (β+p̃[S]−1)/α, this yields
q1(n) = 0, but for larger n, q1(n) ≥ 1. For q > q1(n), the

change in request rate (4) evaluates to zero because φ(n|q) =
1, and thus φ(n+ 1|q + 1) = 1 for α < β.

We can now rewrite (4) with only the nonzero terms in the
summation as

E[R[S + n+ 1]]− E[R[S + n]]

=

q1(n)∑
q=q0(n)

Pr(εIn−1
q)[(1− φ(n|q))φ(n+ 1|q)

−φ(n|q)(1− φ(n+ 1|q + 1))]. (5)

The probability Pr(ε
In−1
q) takes the form

Pr(εIn−1
q) =

n−q−1∑
i1=0

n−q∑
i2=i1+1

· · ·
n−1∑

iq=iq−1+1

[
i1−1∏
a1=0

(1− φ(a1|0))

]

×φ(i1|0)

[
i2−1∏

a2=i1+1

(1− φ(a2|1))

]
φ(i2|1) · · ·

×

[
iq−1∏

aq=iq−1+1

(1− φ(aq|q − 1))

]
φ(iq|q − 1)

×
n−1∏

aq+1=iq+1

(1− φ(aq+1|q)).

This expression comes from summing all combinations of
choosing q of the n slots for there to be a request, and the
term corresponding to slot a in which a request occurs takes
the form φ(a|b). The other terms take the form 1− φ(a|b).

We now define the inverse functions for q0(n) and q1(n) to
determine for which values of a the terms of the summation
above are nonzero. We define q−10 (a) = max{n ∈ Z≥0 :
p̃[S] − α(n − 1) + βa > 1}. Then the terms in the above
summation cannot be of the form φ(a|q) for q < q−10 (a).
Similarly, we define q−11 (a) = min{n ∈ Z≥0 : p̃[S] − α(n +
1) +βa < 0}. Then the terms in the above summation cannot
be of the form 1 − φ(a|q) for q > q−11 (a). Eliminating the
terms that necessarily evaluate to zero, we now have

Pr(εIn−1
q) =

[q−1
0 (0)−1∏
a0=0

(1− φ(a0|0))

]

×
q−1
0 (1)−1∑
i1=q

−1
0 (0)

q−1
0 (2)−1∑
i2=q

−1
0 (1)

· · ·
q1(n−1)∑

iq′=iq′−1+1[
i1∏

a1=q
−1
0 (0)

(1− φ(a1|0))

]
φ(i1|0)

[q−1
0 (1)−1∏
b1=i1+1

(1− φ(b1|1))

]

×

[
i2∏

a2=q
−1
0 (1)

(1− φ(a2|1))

]
φ(i2|1)

[q−1
0 (2)−1∏
b2=i2+1

(1− φ(b2|2))

]
...

×

[iq′∏
aq′=q

−1
0 (q′−1)

(1− φ(aq′ |q′ − 1))

]
φ(iq′ |q′ − 1)

×

[
q1(n−1)∏
bq′=iq′+1

(1− φ(bq′ |q′))

]

×

[
n−1∏

aq′+1=q1(n−1)+1

φ(aq′+1|q − (n− aq′+1))

]
(6)

where q′ = q − (n − q1(n − 1)). In the last product term in
this expression, the parameter q− (n−aq′+1) in φ(·|·) ranges
from q−(n−q1(n−1)−1) to q−1. If q < n−q1(n−1)−1,
the whole expression evaluates to zero.

Since in (5) the parameter q ranges from q0(n) to q1(n),
we can declare the following sufficient condition for (5) to
evaluate to zero:

n >

(⌊
α

β
(n)− p̃[S]

β
+

1

β

⌋)n
0

+

(⌊
α

β
(n− 1)− p̃[S]

β
+

1

β

⌋)n−1
0

+ 1. (7)

For sufficiently large n, the term
⌊
α
β (n)− p̃[S]

β + 1
β

⌋
will be

greater than zero, and since α < β, it will be less than n. For
large enough n, we then have the condition

n >

⌊
α

β
(n)− p̃[S]

β
+

1

β

⌋
+

⌊
α

β
(n− 1)− p̃[S]

β
+

1

β

⌋
+ 1. (8)

Finally, we remove the floor function for the two b·c terms,
and we have another sufficient condition

n >
α

β
(n)− p̃[S]

β
+

1

β
+
α

β
(n− 1)− p̃[S]

β
+

1

β
+ 1 (9)

since the right hand side (RHS) quantity is greater than or
equal to that of (8). Solving for n and ensuring it is integer,
we have

n >

⌈
2(1− p̃[S])− α+ β

β − 2α

⌉
. (10)

for 1− 2α/β > 0.

B. Numerical Examples
We provide some numerical examples of the request rate

evolution in Figure 2. For α = 0.4, β = 0.9556, p̃[S] = 0.5,
the condition (10) evaluates to n > 10. For α = 0.1, β =
0.258, p̃[S] = 0.5, the sufficient condition evaluates to n > 20.
We observe in the plot that the request rate in the first case
reaches its steady state sooner than in the second case, so the
sufficient condition is useful for modeling the request profile of
a system. We also plot the results for the case of α = 0.1, β =
0.245, p̃[S] = 0.5, 1 − 2α/β < 0, so the sufficient condition
does not apply (nor is it satisfied), but the plot appears to reach
a steady state or at least approach an asymptote. So there are
cases that do not satisfy the sufficient condition and which we
are not yet able to analyze the behavior. We also note that the
particular value at which the requests settle at in steady state
varies depending on the parameters, and we can even achieve
a value close to zero, as in the case of α = 0.99, β = 0.999,
p̃[S] = 0.5 (sufficient condition also does not apply here).

0 10 20 30 40 50

Time Slot (n)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
e

q
u

e
s
t

R
a

te

α = 0.4, β = 0.9556, p̃[S] = 0.5

α = 0.1, β = 0.258, p̃[S] = 0.5

α = 0.5, β = 0.75, p̃[S] = 0.5

α = 0.99, β = 0.999, p̃[S] = 0.5

Fig. 2. Request rate vs. time slot.

V. LIMITING THE HISTORY OF REQUESTS

To compare the performance between caching policies over
an infinite horizon, it would help if the request rate eventually
decayed to zero. Otherwise, the missed request rate would
continually escalate as more packets arrive to the system. In
this section, we consider altering the proposed model to limit
the history of requests by using a moving time window, so that
only the recent requests in the window affect the request rate.
The behavior of this model is that the request rate approaches
zero for larger n, since the age grows without limit, but the
requests are limited by the length of the window. To model
this, we replace rm[Sm, Sm + n − 1] in the request rate
expression with rm[Sm + n − w, Sm + n − 1], w ∈ Z≥0
being the length of the time window. We also note that p̃m[S]
for S > Sm is insufficient for tracking the evolution of the
request rate, and the recent window of requests is needed.2

The request rate for a windowed request history is defined
as
E[Rm[S + n]]

=

{∑n
q=0 φm(n|q) Pr(ε

In−1
m,q), if 0 ≤ n ≤ w∑w

q=0 φm(n|q) Pr(ε
[S+n−w,S+n−1]
m,q), if n > w

In this case of a windowed request history, a sufficient
condition for when the request rate goes to zero is, for n > w,

q0(n) > w

since φm(n|q) in the expression above will be zero for all
q ∈ [0, w] when n satisfies this condition. From this we can
get another sufficient condition

n >

⌈
βw + p̃[S]

α

⌉
Due to the difficulty in tracking the moving window of

requests, we simulate the request model and provide the results
in Figure 3. We first consider two cases with a request history
window of length w = 10. For α = 0.4, β = 0.9556,
p̃[S] = 0.5, the condition above yields n > 26, which is
the actual slot that it reaches zero. For α = 0.5, β = 0.75,
p̃[S] = 0.5, the condition yields n > 16, and again is the actual

2The proof of optimality of policy π̃ (Theorem 1) may not apply exactly
for this model, and we will consider the optimal policy in future work.

0 20 40 60 80 100

Time Slot (n)

0

0.1

0.2

0.3

0.4

0.5

0.6

R
e

q
u

e
s
t

R
a

te

α = 0.4, β = 0.9556, p̃[S] = 0.5, w = 10
α = 0.5, β = 0.75, p̃[S] = 0.5, w = 10
α = 0.4, β = 0.9556, p̃[S] = 0.5, w = 20
α = 0.5, β = 0.75, p̃[S] = 0.5, w = 20

Fig. 3. Request rate vs. time slot.

slot that it reaches zero. Reducing the ratio α/β results in a
faster decaying request model. We then increase the window
w = 20 and simulate for the same parameters as the previous
two. We see that using a longer request window results in a
request model that reaches zero later.

VI. CONCLUSION

We studied a mobile content caching system and proposed
a dynamic model of requests for content that incorporates the
age and popularity of the information. Under this model, we
have demonstrated that the optimal policy for minimizing the
number of missed requests is to keep the packets that have the
highest instantaneous request value in the cache. This policy
does not depend on the exact age or history of requests, and
we defined an effective age metric that is a sufficient statistic
for optimal cache management. We also analyzed the request
model and provided a sufficient condition for when the request
rate reaches steady state. We also modified the request model
in which the impact of the popularity is limited to a finite time
window, and we provided a sufficient condition for when the
request rate reaches zero. Future work includes further analysis
of the modified model and optimal cache management, and
studying a system in which arriving packets are updates to the
cached content.

REFERENCES

[1] Cisco Inc., “The Zettabyte era: Trends and Analysis,” White Paper,
June 2016.

[2] M. Dehghan, L. Massouli, D.Towsley, D.S. Menasch, and Y. C. Tay, “A
utility optimization approach to network cache design,” In Proc. IEEE
INFOCOM, 2016.

[3] P. Rodriguez, C. Spanner, and E.W. Biersack, “Analysis of Web Caching
Architectures: Hierarchical and Distributed Caching,” IEEE Trans.
Networking, vol. 9, no. 4, pp. 404–418, Aug. 2001.

[4] J. Zhang, “A Literature Survey of Cooperative Caching in Content
Distribution Networks,” arXiv:1210.0071v1 Sep. 2012.

[5] N. Golrezaei, K. Shanmugam, A. Dimakis, A. Molisch, and G. Caire,
“Femtocaching: Wireless video content delivery through distributed
caching helpers,” In Proc. IEEE INFOCOM, Mar. 2012.

[6] M. Dong, H. Li, K. Ota, and J. Xiao, “Rule caching in SDN-enabled
mobile access networks,” IEEE Network, vol. 29, no. 4, pp. 40–45, Jul.
2015.

[7] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” In Proc. IEEE INFOCOM, Mar. 2010.

[8] V. S. Mookerjee and Y. Tan, “Analysis of a Least Recently Used Cache
Management Policy for Web Browsers,” Operations Research, vol. 50,
no. 2, pp. 345–357, Mar. 2002.

